ECIR '22, 10-14 April 2022 | Stavanger, Norway

Timo Breuer, Norbert Fuhr, Philipp Schaer

UNIVERSITÄT DUISBURG ESSEN Technology Arts Sciences TH Köln

Introduction

Motivations

- Simulated user interactions enhance system-oriented evaluations with more user-oriented directives in a cost-efficient way
- Research on query simulations is underrepresented

Contributions

- Validation of (conventional) query simulation methods based on TREC test collections
- Framework covering different evaluation perspectives

Maxwell and Azzopardi, CIKM 2015; Pääkönen et al., Information Retrieval Journal 2017; Zhang et al., ICTIR 2017

Research questions

RQ1 How do real user queries relate to simulated queries made from topic texts and known-items in terms of retrieval effectiveness?

RQ2 To which degree do simulated queries reproduce real queries provided that only resources of the test collection are considered for the query simulation?

Simulating user query variants

- Simulations of **user query variants (UQVs)** for a given topic of a TREC test collection
- Two stage-approach:
 - 1. Term candidate generation
 - 2. Query modification strategy
- Evaluation of **16 query simulators**:
 - $\circ~$ 2 term candidate generation methods (TTS and KIS)
 - 8 query modification strategies (S1 S4")

Conventional term candidate generation

TREC Topic Searcher (TTS)

 $T_{ ext{topic}} = \{t_1, ..., t_n\}$ with $t_1, ..., t_n$ ordered by

the term sequence of the concatenated topic's title, description, and narrative

Known-item Searcher (KIS)

 $T_{\rm rel} = \{t_1, ..., t_n\} \quad \text{with} \quad t_1, ..., t_n \text{ ordered by}$ $P(t|D_{\rm rel}) = (1 - \lambda)P_{\rm topic}(t|D_{\rm rel}) + \lambda P_{\rm background}(t) \quad \text{Controlled Query Generation [Jordan et al., JCDL 2006]}$

Conventional query modification strategy

Strategy	Query modifications
S1	$q_1 = \{t_1\}; q_2 = \{t_2\}; q_3 = \{t_3\}; \dots$
S2	$q_1 = \{t_1, t_2\}; q_2 = \{t_1, t_3\}; q_3 = \{t_1, t_4\}; \dots$
S2'	$q_1 = \{t_1, t_2, t_3\}; q_2 = \{t_1, t_2, t_4\}; q_3 = \{t_1, t_2, t_5\}; \dots$
S3	$q_1 = \{t_1\}; q_2 = \{t_1, t_2\}; q_3 = \{t_1, t_2, t_3\}; \dots$
S3'	$q_1 = \{t_1, t_2, t_3\}; q_2 = \{t_1, t_2, t_3, t_4\}; q_3 = \{t_1, t_2, t_3, t_4, t_5\}; \dots$

Combining the term generation methods with these strategies results in **10 query simulators**, denoted as TTS_{S1} , KIS_{S1} , TTS_{S2} , KIS_{S2} , ...

Controlled Query Generation combined with Query Change Model

Modified two-stage approach:

- 1. Query generation with n-grams and Controlled Query Generation [Jordan et al., JCDL 2006]
- 2. Query ranking by Query Change Model [Yang et al., TOIS 2015]

Controlled Query Generation combined with Query Change Model

Modified two-stage approach:

- 1. **Query generation** with n-grams and Controlled Query Generation [Jordan et al., JCDL 2006]
- 2. Query ranking by Query Change Model [Yang et al., TOIS 2015]

$$\begin{array}{l} \text{n-grams made from} \left\{ \begin{array}{l} T_{\text{topic+rel}} & \rightleftharpoons \text{TTS}_{\text{s4-s4}^n} \\ T_{\text{rel}} & \rightrightarrows \text{KIS}_{\text{s4-s4}^n} \end{array} \right. \\ T_{\text{topic+rel}} = \left(\underbrace{T_{\text{topic}} \cap T_{\text{rel}}}_{\text{topic terms in } T_{\text{rel}}} \right) \cup \left(\underbrace{T_{\text{rel}} \setminus T_{\text{topic}}}_{\text{-top k terms of relevant}} \right)_{\text{-top k terms of relevant}} \\ \text{-top k terms of relevant}_{\text{documents not in topic terms;}} \\ \text{-k models user's vocabulary}_{\text{and domain knowledge}} \end{array}$$

Controlled Query Generation combined with Query Change Model

Modified two-stage approach:

- **Query generation** with n-grams and Controlled Query Generation [Jordan et al., JCDL 2006] 1.
- 2. Query ranking by Query Change Model [Yang et al., TOIS 2015]

n-grams ranked by
$$\frac{\sum_{j}^{|q|} \Theta_{j}}{|q|} \text{ (in reference to previous query, starting with } q_{\text{title}})$$

$$\Theta_{j} = \begin{cases} (1 - P(t_{j}|D_{\text{rel}})), & t_{j} \in q_{\text{title}} & \text{prefer title terms} \\ 1 - \beta P(t_{j}|D_{\text{rel}}) & t_{j} \in +\Delta q \wedge t_{j} \in T_{\text{topic}} & \text{prefer topic terms} \\ \text{efidf}(t_{j}) & t_{j} \in +\Delta q \wedge t_{j} \notin T_{\text{topic}} & \text{prefer other terms} \\ -\delta P(t_{j}|D_{\text{rel}}) & t_{j} \in -\Delta q & \text{prefer previous ter} \end{cases}$$

terms

Controlled Query Generation combined with Query Change Model

Query generation with 3,4,5-gram candidates and query ranking by three different parameterizations

Strategy	α	β	ϵ	δ	Description
S4	2.2	0.2	0.05	0.6	prefers title and topic terms,
					keeps previous query terms
S4'	2.2	0.2	0.25	0.1	mostly keeps previous query terms,
					tends to include other terms
S4"	0.2	0.2	0.025	0.5	sticks to topic terms,
					more variation between reformulations

Resulting in 6 more query simulators, denoted as $TTS_{S4}^{}$, $KIS_{S4}^{}$, $TTS_{S4'}^{}$, $KIS_{S4'}^{}$, ...

Evaluation framework

• Retrieval performance

Average retrieval performance, Root-Mean-Square-Error, p-values of t-tests

• Shared task utility

Relative system orderings compared by Kendall's tau

• Effort and effect

Session Discounted Cumulative Gain (sDCG), Trade-offs between queries and browsing depth

• Query term similarity Jaccard similarity

UQV dataset & implementations

- User query variants dataset by Benham and Culpepper: https://culpepper.io/publications/robust-uqv.txt.gz
 - 8 users formulated 3,152 queries for 250 topics
- TREC Common Core 2017 test collection
 - \circ ~ Each of the 8 users formulated at least one query for the 50 topics
 - \circ 5th user (denoted as UQV₅) formulated 500 queries, i.e., 10 queries for 50 topics
- Anserini's indexing and Pyserini's interactive search feature
- BM25 with Anserini's default parameters (b=0.4, k=0.9)

Code and query dataset: https://github.com/irgroup/ecir2022-uqv-sim

Table A.1: Average retrieval performance over q queries

		All c	lueries			First	queries	3	Best queries			
	q	nDCG	P@10	AP	q	nDCG	P@10	AP	q	nDCG	P@10	AP
	$ \begin{array}{r} 150 \\ 52 \\ 68 \\ 123 \\ 500 \\ 136 \\ 50 \end{array} $	$\begin{array}{r} .3787\\ .4221\\ .3922\\ .4126\\ .3922\\ .4030\\ .4980\end{array}$	$\begin{array}{r} .4507\\ .5058\\ .4353\\ .4894\\ .4330\\ .4713\\ .5720\\ \end{array}$	$\begin{array}{r} .1581 \\ .2020 \\ .1780 \\ .1888 \\ .1649 \\ .1843 \\ .2418 \end{array}$	$50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\$	$\begin{array}{r} .4293\\ .4096\\ .3979\\ .4469\\ .4447\\ .4488\\ .4980\\ \end{array}$	$\begin{array}{r} .5040 \\ .4880 \\ .4560 \\ .5220 \\ .4920 \\ .5080 \\ .5720 \end{array}$.2003 .1894 .1813 .2099 .2043 .2197 .2418	$50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\$	$\begin{array}{r} .4969\\ .4103\\ .4117\\ .5146\\ .5353\\ .4980\\ .4980\end{array}$	$\begin{array}{r} .6320\\ .4900\\ .4800\\ .6300\\ .7240\\ .5980\\ .5720\\ \end{array}$	$\begin{array}{r} .2429\\ .1896\\ .1878\\ .2644\\ .2807\\ .2515\\ .2418\\ \end{array}$
$\frac{UQV_8}{TTS_{S1}}$ $\frac{TTS_{S2}}{TTS_{S2}}$ $\frac{TTS_{S3}}{TTS_{S3}}$ $\frac{TTS_{S4}}{TTS_{S4}}$	$\begin{array}{c c} 156\\ 500\\ 500\\ 500\\ 500\\ 500\\ 500\\ 500\\ 5$.3814 .0479 .1964 .3387 .323 .3499 .4493 .4788 .3780	.4545 .0306 .1716 .3426 .3632 .3874 .5168 .5626 .4224	.1645 .0127 .0688 .1413 .1388 .1474 .2088 .2288 .1644	50 50 50 50 50 50 50 50 50 50	$\begin{array}{r} .4046\\ .1705\\ .3592\\ .3895\\ .1705\\ .3592\\ .4409\\ .4976\\ .4393\\ \end{array}$.4500 .3900 .4020 .1280 .3900 .4920 .5940 .4860	.1799 .0541 .1604 .1821 .0541 .1604 .2072 .2429 .2065	50 50 50 50 50 50 50 50 50 50	.4556 .3066 .4391 .4639 .4776 .4709 .5945 .6207 .5812	.5620 .2360 .5100 .5940 .6080 .6060 .7620 .8040 .7680	.2193 .0971 .2097 .2283 .2383 .2311 .3282 .3554 .3222
KISs1 KISs2 KISs2' KISs3 KISs3' KISs4 KISs4' KISs4''	$\begin{array}{c} 500\\ 500\\ 500\\ 500\\ 500\\ 500\\ 500\\ 500$	$\begin{array}{r} .1334\\ .3969\\ .5114\\ .5598\\ .5941\\ .5216\\ .5008\\ .4859\end{array}$	$\begin{array}{r} .1044\\ .3972\\ .5666\\ .6336\\ .6882\\ .5976\\ .5888\\ .5584\end{array}$	$\begin{array}{r} .0314\\ .1615\\ .2507\\ .3009\\ .3285\\ .2604\\ .2416\\ .2293\end{array}$	$50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\$	$\begin{array}{r} .2836\\ .5096\\ .5474\\ .2836\\ .5096\\ .5146\\ .5033\\ .5191 \end{array}$	$\begin{array}{r} .2040\\ .5400\\ .6220\\ .2040\\ .5400\\ .5960\\ .5980\\ .6020\end{array}$	$\begin{array}{r} .0813\\ .2535\\ .2870\\ .0813\\ .2535\\ .2630\\ .2400\\ .2644 \end{array}$	$50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\$.4087 .5988 .6336 .6907 .6922 .6461 .6269 .6401	.4400 .7460 .7980 .8620 .8620 .8200 .8080 .8360	$\begin{array}{c} .1492\\ .3429\\ .3762\\ .4299\\ .4337\\ .3902\\ .3703\\ .3781\end{array}$

Table A.1: Average retrieval performance over q queries

		All q	ueries			First	queries	3		Best queries			
	q	nDCG	P@10	AP	q	nDCG	P@10	AP	q	nDCG	P@10	AP	
$\begin{matrix} UQV_1\\ UQV_2\\ UQV_3\\ UQV_4\\ UQV_5\\ UQV_6\\ UQV_6\\ UQV_7\\ UQV_8 \end{matrix}$	$150 \\ 52 \\ 68 \\ 123 \\ 500 \\ 136 \\ 50 \\ 156$	$\begin{array}{c} .3787\\ .4221\\ .3922\\ .4126\\ .3922\\ .4030\\ .4980\\ .3814\end{array}$	$\begin{array}{c} .4507\\ .5058\\ .4353\\ .4894\\ .4330\\ .4713\\ .5720\\ .4545\end{array}$	$\begin{array}{c} .1581\\ .2020\\ .1780\\ .1888\\ .1649\\ .1843\\ .2418\\ .1645\end{array}$	50 50 50 50 50 50 50 50 50	$\begin{array}{r} .4293\\ .4096\\ .3979\\ .4469\\ .4447\\ .4488\\ .4980\\ .4046\end{array}$	$\begin{array}{c} .5040\\ .4880\\ .4560\\ .5220\\ .4920\\ .5080\\ .5720\\ .4500\end{array}$	$\begin{array}{c} .2003\\ .1894\\ .1813\\ .2099\\ .2043\\ .2197\\ .2418\\ .1799 \end{array}$	50 50 50 50 50 50 50 50 50	$\begin{array}{c} .4969\\ .4103\\ .4117\\ .5146\\ .5353\\ .4980\\ .4980\\ .4556\end{array}$	$\begin{array}{c} .6320\\ .4900\\ .4800\\ .6300\\ .7240\\ .5980\\ .5720\\ .5620\end{array}$	$\begin{array}{c} .2429\\ .1896\\ .1878\\ .2644\\ .2807\\ .2515\\ .2418\\ .2193 \end{array}$	
$\begin{array}{c} TTS_{S1}\\ TTS_{S2}\\ TTS_{S2'}\\ TTS_{S3'}\\ TTS_{S3'}\\ TTS_{S4}\\ TTS_{S4'}\\ TTS_{S4''} \end{array}$	$500 \\ 500 $	$\begin{array}{r} .0479\\ .1964\\ .3387\\ .3323\\ .3499\\ .4493\\ .4788\\ .3780\\ \end{array}$	$\begin{array}{c} .0306\\ .1716\\ .3426\\ .3632\\ .3874\\ .5168\\ .5626\\ .4224 \end{array}$	$\begin{array}{c} .0127\\ .0688\\ .1413\\ .1388\\ .1474\\ .2088\\ .2288\\ .1644\end{array}$	$50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\$	$\begin{array}{r} .1705\\ .3592\\ .3895\\ .1705\\ .3592\\ .4409\\ .4976\\ .4393\end{array}$	$\begin{array}{c} .1280\\ .3900\\ .4020\\ .1280\\ .3900\\ .4920\\ .5940\\ .4860\end{array}$	$\begin{array}{c} .0541\\ .1604\\ .1821\\ .0541\\ .1604\\ .2072\\ .2429\\ .2065\end{array}$	$50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\$	$\begin{array}{r} .3066\\ .4391\\ .4639\\ .4776\\ .4709\\ .5945\\ .6207\\ .5812\end{array}$	$\begin{array}{r} .2360\\ .5100\\ .5940\\ .6080\\ .6060\\ .7620\\ .8040\\ .7680\end{array}$	$\begin{array}{c} .0971\\ .2097\\ .2283\\ .2383\\ .2311\\ .3282\\ .3554\\ .3222\end{array}$	
$\begin{array}{c} \rm KIS_{S1} \\ \rm KIS_{S2} \\ \rm KIS_{S2'} \\ \rm KIS_{S3'} \\ \rm KIS_{S3'} \\ \rm KIS_{S4'} \\ \rm KIS_{S4'} \\ \rm KIS_{S4''} \end{array}$	$500 \\ 500 $	$\begin{array}{r} .1334\\ .3969\\ .5114\\ .5598\\ .5941\\ .5216\\ .5008\\ .4859\end{array}$	$\begin{array}{r} .1044\\ .3972\\ .5666\\ .6336\\ .6882\\ .5976\\ .5888\\ .5584\end{array}$	$\begin{array}{c} .0314\\ .1615\\ .2507\\ .3009\\ .3285\\ .2604\\ .2416\\ .2293\end{array}$	$50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\$	$\begin{array}{r} .2836\\ .5096\\ .5474\\ .2836\\ .5096\\ .5146\\ .5033\\ .5191 \end{array}$	$\begin{array}{r} .2040\\ .5400\\ .6220\\ .2040\\ .5400\\ .5960\\ .5980\\ .6020\end{array}$	$\begin{array}{c} .0813\\ .2535\\ .2870\\ .0813\\ .2535\\ .2630\\ .2400\\ .2644 \end{array}$	$50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\$	$\begin{array}{r} .4087\\ .5988\\ .6336\\ .6907\\ .6922\\ .6461\\ .6269\\ .6401\end{array}$.4400 .7460 .7980 .8620 .8620 .8200 .8080 .8360	$\begin{array}{c} .1492\\ .3429\\ .3762\\ .4299\\ .4337\\ .3902\\ .3703\\ .3781\\ \end{array}$	

User query variants

Simulated queries

Table A.1: Average retrieval performance over q queries

		All c	ueries			First	queries	3		Best queries			
	q	nDCG	P@10	AP	q	nDCG	P@10	AP	q	nDCG	P@10	AP	
$\begin{matrix} \mathrm{U}\mathrm{Q}\mathrm{V}_1\\ \mathrm{U}\mathrm{Q}\mathrm{V}_2\\ \mathrm{U}\mathrm{Q}\mathrm{V}_3\\ \mathrm{U}\mathrm{Q}\mathrm{V}_4\\ \mathrm{U}\mathrm{Q}\mathrm{V}_5\\ \mathrm{U}\mathrm{Q}\mathrm{V}_6\\ \mathrm{U}\mathrm{Q}\mathrm{V}_7\\ \mathrm{U}\mathrm{Q}\mathrm{V}_8 \end{matrix}$	$\begin{array}{c} 150 \\ 52 \\ 68 \\ 123 \\ 500 \\ 136 \\ 50 \\ 156 \end{array}$	$\begin{array}{c} .3787\\ .4221\\ .3922\\ .4126\\ .3922\\ .4030\\ .4980\\ .3814\end{array}$	$\begin{array}{c} .4507\\ .5058\\ .4353\\ .4894\\ .4330\\ .4713\\ .5720\\ .4545\end{array}$	$\begin{array}{c} .1581\\ .2020\\ .1780\\ .1888\\ .1649\\ .1843\\ .2418\\ .1645\end{array}$	50 50 50 50 50 50 50 50 50	$\begin{array}{c} .4293\\ .4096\\ .3979\\ .4469\\ .4447\\ .4488\\ .4980\\ .4046\end{array}$	$\begin{array}{c} .5040\\ .4880\\ .4560\\ .5220\\ .4920\\ .5080\\ .5720\\ .4500\end{array}$	$\begin{array}{c} .2003\\ .1894\\ .1813\\ .2099\\ .2043\\ .2197\\ .2418\\ .1799 \end{array}$	50 50 50 50 50 50 50 50 50	$\begin{array}{c} .4969\\ .4103\\ .4117\\ .5146\\ .5353\\ .4980\\ .4980\\ .4556\end{array}$	$\begin{array}{c} .6320\\ .4900\\ .4800\\ .6300\\ .7240\\ .5980\\ .5720\\ .5620\end{array}$	$\begin{array}{c} .2429\\ .1896\\ .1878\\ .2644\\ .2807\\ .2515\\ .2418\\ .2193\end{array}$	
$\begin{array}{c} TTS_{S1}\\ TTS_{S2}\\ TTS_{S2'}\\ TTS_{S3'}\\ TTS_{S3'}\\ TTS_{S4'}\\ TTS_{S4'}\\ TTS_{S4''}\\ TTS_{S4''} \end{array}$	$ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 $	$\begin{array}{r} .0479\\ .1964\\ .3387\\ .3323\\ .3499\\ .4493\\ .4788\\ .3780\\ \end{array}$	$\begin{array}{c} .0306\\ .1716\\ .3426\\ .3632\\ .3874\\ .5168\\ .5626\\ .4224\\ \end{array}$	$\begin{array}{c} .0127\\ .0688\\ .1413\\ .1388\\ .1474\\ .2088\\ .2288\\ .1644\\ \end{array}$	50 50 50 50 50 50 50 50	$\begin{array}{c} .1705\\ .3592\\ .3895\\ .1705\\ .3592\\ .4409\\ .4976\\ .4393\end{array}$	$\begin{array}{c} .1280\\ .3900\\ .4020\\ .1280\\ .3900\\ .4920\\ .5940\\ .4860\end{array}$	$\begin{array}{c} .0541\\ .1604\\ .1821\\ .0541\\ .1604\\ .2072\\ .2429\\ .2065 \end{array}$	50 50 50 50 50 50 50 50	$\begin{array}{r} .3066\\ .4391\\ .4639\\ .4776\\ .4709\\ .5945\\ .6207\\ .5812\end{array}$	$\begin{array}{c} .2360\\ .5100\\ .5940\\ .6080\\ .6060\\ .7620\\ .8040\\ .7680\end{array}$	$\begin{array}{c} .0971\\ .2097\\ .2283\\ .2383\\ .2311\\ .3282\\ .3554\\ .3222\\ \end{array}$	
$\begin{array}{c} \mathrm{KIS}_{\mathrm{S1}}\\ \mathrm{KIS}_{\mathrm{S2}}\\ \mathrm{KIS}_{\mathrm{S2}'}\\ \mathrm{KIS}_{\mathrm{S3}}\\ \mathrm{KIS}_{\mathrm{S3}'}\\ \mathrm{KIS}_{\mathrm{S4}'}\\ \mathrm{KIS}_{\mathrm{S4}'}\\ \mathrm{KIS}_{\mathrm{S4}'}\\ \mathrm{KIS}_{\mathrm{S4}'}\\ \end{array}$	$ 500 \\ 500 \\ 50$	$\begin{array}{r} 1334\\.3969\\.5114\\.5598\\.5941\\.5216\\.5008\\.4859\end{array}$	$\begin{array}{c} 1044\\ .3972\\ .5666\\ .6336\\ .6882\\ .5976\\ .5888\\ .5584\end{array}$	$\begin{array}{c} 0314\\ .1615\\ .2507\\ .3009\\ .3285\\ .2604\\ .2416\\ .2293\end{array}$	50 50 50 50 50 50 50 50 50	$\begin{array}{r} 2836\\ .5096\\ .5474\\ .2836\\ .5096\\ .5146\\ .5033\\ .5191 \end{array}$	$\begin{array}{c} 2040\\ .5400\\ .6220\\ .2040\\ .5400\\ .5960\\ .5980\\ .6020\end{array}$	$\begin{array}{r} 0813\\ .2535\\ .2870\\ .0813\\ .2535\\ .2630\\ .2400\\ .2644 \end{array}$	50 50 50 50 50 50 50 50 50	$\begin{array}{r} 4087\\ .5988\\ .6336\\ .6907\\ .6922\\ .6461\\ .6269\\ .6401 \end{array}$	4400 .7980 .8620 .8620 .8620 .8200 .8080 .8360	1492 .3429 .3762 .4299 .4337 .3902 .3703 .3781	

UQV performance ranges between conventional query simulation methods TTS_{S1-S3'} and KIS_{S1-S3'}

Lower-bound performance

Upper-bound performance

Table A.1: Average retrieval performance over q queries

		All q	ueries			First	queries	3	Best queries			
	q	nDCG	P@10	AP	q	nDCG	P@10	AP	q	nDCG	P@10	AP
$\begin{matrix} UQV_1\\ UQV_2\\ UQV_3\\ UQV_4\\ UQV_5\\ UQV_6\\ UQV_7\\ UQV_8\end{matrix}$	$\begin{array}{c} 150 \\ 52 \\ 68 \\ 123 \\ 500 \\ 136 \\ 50 \\ 156 \end{array}$	$\begin{array}{c} .3787\\ .4221\\ .3922\\ .4126\\ .3922\\ .4030\\ .4980\\ .3814\end{array}$	$\begin{array}{c} .4507\\ .5058\\ .4353\\ .4894\\ .4330\\ .4713\\ .5720\\ .4545\end{array}$	$\begin{array}{c} .1581\\ .2020\\ .1780\\ .1888\\ .1649\\ .1843\\ .2418\\ .1645\end{array}$	50 50 50 50 50 50 50 50 50	$\begin{array}{c} .4293\\ .4096\\ .3979\\ .4469\\ .4447\\ .4488\\ .4980\\ .4046\end{array}$	$\begin{array}{c} .5040\\ .4880\\ .4560\\ .5220\\ .4920\\ .5080\\ .5720\\ .4500\end{array}$	$\begin{array}{c} .2003\\ .1894\\ .1813\\ .2099\\ .2043\\ .2197\\ .2418\\ .1799 \end{array}$	50 50 50 50 50 50 50 50 50	$\begin{array}{c} .4969\\ .4103\\ .4117\\ .5146\\ .5353\\ .4980\\ .4980\\ .4556\end{array}$	$\begin{array}{c} .6320\\ .4900\\ .4800\\ .6300\\ .7240\\ .5980\\ .5720\\ .5620\end{array}$	$\begin{array}{c} .2429\\ .1896\\ .1878\\ .2644\\ .2807\\ .2515\\ .2418\\ .2193\end{array}$
$\begin{array}{c} TTS_{S1}\\ TTS_{S2}\\ TTS_{S2'}\\ TTS_{S3}\\ TTS_{S3'}\\ TTS_{S4'}\\ TTS_{S4'}\\ TTS_{S4''}\\ TTS_{S4''}\\ \end{array}$	$500 \\ 500 $	$\begin{array}{r} .0479\\ .1964\\ .3387\\ .3323\\ .4493\\ .4493\\ .4788\\ .3780\\ \end{array}$	$\begin{array}{r} .0306\\ .1716\\ .3426\\ .3632\\ .3874\\ .5168\\ .5626\\ .4224\\ \end{array}$	$\begin{array}{c} .0127\\ .0688\\ .1413\\ .1388\\ 1474\\ .2088\\ .2288\\ .1644\\ \end{array}$	50 50 50 50 50 50 50 50 50	$\begin{array}{r} .1705\\ .3592\\ .3895\\ .1705\\ .3592\\ .4409\\ .4976\\ .4393\\ \end{array}$	$\begin{array}{c} .1280\\ .3900\\ .4020\\ .1280\\ .3900\\ .4920\\ .5940\\ .4860\\ \end{array}$	$\begin{array}{c} .0541\\ .1604\\ .1821\\ .0541\\ 1604\\ .2072\\ .2429\\ .2065\end{array}$	50 50 50 50 50 50 50 50 50	$\begin{array}{r} .3066\\ .4391\\ .4639\\ .4776\\ 4709\\ .5945\\ .6207\\ .5812\end{array}$	$\begin{array}{r} .2360\\ .5100\\ .5940\\ .6080\\ 6060\\ .7620\\ .8040\\ .7680\end{array}$.0971 .2097 .2283 .2383 .2311 .3282 .3554 .3222
$\begin{array}{c} \mathrm{KIS}_{\mathrm{S1}} \\ \mathrm{KIS}_{\mathrm{S2}} \\ \mathrm{KIS}_{\mathrm{S2}'} \\ \mathrm{KIS}_{\mathrm{S3}} \\ \mathrm{KIS}_{\mathrm{S3}'} \\ \mathrm{KIS}_{\mathrm{S4}'} \\ \mathrm{KIS}_{\mathrm{S4}'} \\ \mathrm{KIS}_{\mathrm{S4}''} \end{array}$	500 500 500 500 500 500 500 500	$\begin{array}{r} .1334\\ .3969\\ .5114\\ .5598\\ .5941\\ .5216\\ .5008\\ .4859\end{array}$	$\begin{array}{r} .1044\\ .3972\\ .5666\\ .6336\\ .6882\\ .5976\\ .5888\\ .5584\end{array}$	$\begin{array}{r} .0314\\ .1615\\ .2507\\ .3009\\ .3285\\ .2604\\ .2416\\ .2293\end{array}$	50 50 50 50 50 50 50 50 50	$\begin{array}{r} .2836\\ .5096\\ .5474\\ .2836\\ .5096\\ .5146\\ .5033\\ .5191\\ \end{array}$	$\begin{array}{r} .2040\\ .5400\\ .6220\\ .2040\\ .5400\\ .5960\\ .5980\\ .6020\\ \end{array}$	$\begin{array}{r} .0813\\ .2535\\ .2870\\ .0813\\ .2535\\ .2630\\ .2400\\ .2644 \end{array}$	50 50 50 50 50 50 50 50 50	$\begin{array}{r} .4087\\ .5988\\ .6336\\ .6907\\ 6922\\ .6461\\ .6269\\ .6401\end{array}$.4400 .7460 .7980 .8620 .8620 .8200 .8080 .8360	$\begin{array}{c} .1492\\ .3429\\ .3762\\ .4299\\ .4337\\ .3902\\ .3703\\ .3781\\ \end{array}$

UQV performance is most similar to TTS_{S4-S4"}

Similar performance range

focus on **TTS**_{S4-S4"}

Upper-bound performance

Retrieval performance: Root-Mean-Square-Error

RMSE
$$(M(r), M(r')) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (M_i(r) - M_i(r'))^2}$$

M Evaluation measure (e.g. P@10, nDCG, AP)

- $r\,$ Run made from real user queries
- r^\prime Run made from simulated user queries

 $M_i(r)$ Score of the i-th topic

 $\Rightarrow \text{ focus on } \mathsf{TTS}_{\mathsf{S2}'} \text{ and } \mathsf{KIS}_{\mathsf{S2}'}$ $\mathsf{S2':} \ q_1 = \{t_1, t_2, t_3\}; q_2 = \{t_1, t_2, t_4\}; q_3 = \{t_1, t_2, t_5\}; \dots$

Retrieval performance: Root-Mean-Square-Error

Retrieval performance: p-values of paired t-tests

	TTS _{S2} ′ -	0.0857	0.4000	0.7419	0.0097	0.0409	0.0205	0.0003	0.6386	
Simulator	TTS _{S4} -	0.5935	0.1371	0.1131	0.7573	0.8690	0.7302	0.0159	0.2317	- 0.8
	TTS _{S4} ′ -	0.0116	0.0048	0.0005	0.0493	0.0422	0.0878	0.9901	0.0044	
	TTS _{S4} ″ -	0.6468	0.1603	0.1283	0.6981	0.8162	0.6850	0.0156	0.2597	- 0.6
	KIS _{S2} ′ -	0.0002	0.0001	0.0001	0.0016	0.0009	0.0026	0.0741	0.0002	- 0.4
	KIS _{S4} -	0.0096	0.0026	0.0006	0.0285	0.0263	0.0615	0.5787	0.0059	
	KIS _{S4} ′ -	0.0125	0.0033	0.0007	0.0725	0.0611	0.0911	0.8434	0.0039	- 0.2
	KIS ₅₄ ″ -	0.0058	0.0015	0.0004	0.0186	0.0196	0.0458	0.4834	0.0040	
		1	2	3	4	5	6	7	8	
					UC	QV				

Retrieval performance: p-values of paired t-tests

									A
TTS_{S2}	′ - 0.0857	0.4000	0.7419	0.0097	0.0409	0.0205	0.0003	0.6386	
TTS _S ∠	- 0.5935	0.1371	0.1131	0.7573	0.8690	0.7302	0.0159	0.2317	- o
TTS _{S4}	´- 0.0116	0.0048	0.0005	0.0493	0.0422	0.0878	0.9901	0.0044	
<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	' - 0.6468	0.1603	0.1283	0.6981	0.8162	0.6850	0.0156	0.2597	- 0
KIS _{S2}	<i>′</i> - 0.0002	0.0001	0.0001	0.0016	0.0009	0.0026	0.0741	0.0002	- 0
ິ KIS _S ∠	4 - 0.0096	0.0026	0.0006	0.0285	0.0263	0.0615	0.5787	0.0059	
KIS _{S4}	<i>′</i> - 0.0125	0.0033	0.0007	0.0725	0.0611	0.0911	0.8434	0.0039	- C
KIS _{S4} ′́	<i>′</i> - 0.0058	0.0015	0.0004	0.0186	0.0196	0.0458	0.4834	0.0040	
	1	2	3	4	5	6	7	8	
				U	QV				

Retrieval performance: p-values of paired t-tests

	TTS _{S2} ′ -	0.0857	0.4000	0.7419	0.0097	0.0409	0.0205	0.0003	0.6386				
	TTS _{S4} -	0.5935	0.1371	0.1131	0.7573	0.8690	0.7302	0.0159	0.2317	-	0.8		
Simulator	TTS _{S4} ′ -	0.0116	0.0048	0.0005	0.0493	0.0422	0.0878	0.9901	0.0044				
	TTS _{S4} ″ -	0.6468	0.1603	0.1283	0.6981	0.8162	0.6850	0.0156	0.2597	-	- 0.6		
	KIS _{S2} ′ -	0.0002	0.0001	0.0001	0.0016	0.0009	0.0026	0.0741	0.0002	-	- 0.4		
	KIS _{S4} -	0.0096	0.0026	0.0006	0.0285	0.0263	0.0615	0.5787	0.0059				
	KIS _{S4} ′ -	0.0125	0.0033	0.0007	0.0725	0.0611	0.0911	0.8434	0.0039	-	0.2		
	KIS ₅₄ " -	0.0058	0.0015	0.0004	0.0186	0.0196	0.0458	0.4834	0.0040				
		1	2	3	4	5	6	7	8				
	UQV												

Shared task utility

- Usefulness for shared task evaluations (Huurnik et al., CLEF 2010)
- Comparison of system rankings by Kendall's tau
- Voorhees (SIGIR, 1998) recommends Kendall's tau >0.9 as a rule of thumb
- Five systems based on Query Likelihood with Dirichlet smoothing and different parameterizations

Shared task utility

- Usefulness for shared task evaluations (Huurnik et al., CLEF 2010)
- Comparison of system rankings by Kendall's tau
- Voorhees (SIGIR, 1998) recommends Kendall's tau >0.9 as a rule of thumb
- Five systems based on Query Likelihood with Dirichlet smoothing and different parameterizations

Effort and effect: Session-based Discounted Cumulative Gain (sDCG)

Järvelin et al., ECIR 2008

$$sDCG(q_i) = \frac{DCG}{1 + \log_{bq}(i)}$$

bq logarithm base for the query discount q_i query at the i-th position in a session DCG discounted cumulative gain

Effort and effect: Session-based Discounted Cumulative Gain (sDCG)

25

Effort and effect: microeconomics

- Azzopardi (SIGIR 2011) applied microeconomics to interactive IR
- Isoquant between queries and browsing depth for a predefined level of gain (nDCG)
- Distance measure: Mean-Squared-Logarithmic-Error

Effort and effect: microeconomics

Query term similarity

Jaccard similarity as a measure of variance [Liu et al., ICTIR 2019; Mackenzie and Moffat, ICTIR 2021]

$$J(Q,Q') = \frac{|Q \cap Q'|}{|Q \cup Q'|}$$

Q real user query terms Q^\prime simulated query terms

Query term similarity

Jaccard similarity as a measure of variance [Liu et al., ICTIR 2019; Mackenzie and Moffat, ICTIR 2021]

$$J(Q,Q') = \frac{|Q \cap Q'|}{|Q \cup Q'|}$$

Q real user query terms Q' simulated query terms

Query term similarity

Jaccard similarity as a measure of variance [Liu et al., ICTIR 2019; Mackenzie and Moffat, ICTIR 2021]

$$J(Q,Q') = \frac{|Q \cap Q'|}{|Q \cup Q'|}$$

Q real user query terms Q' simulated query terms

Query term similarity

Jaccard similarity as a measure of variance [Liu et al., ICTIR 2019; Mackenzie and Moffat, ICTIR 2021]

$$J(Q,Q') = \frac{|Q \cap Q'|}{|Q \cup Q'|}$$

Q real user query terms Q^\prime simulated query terms

RQ1 How do real user queries relate to simulated queries made from topic texts and known-items in terms of retrieval effectiveness?

- The retrieval performance of real user queries ranges between that of conventional query simulation methods
 - Lower bound performance estimates: **TREC Topic Searcher** with strategies S1 S3'
 - Upper bound performance estimates: Known-item Searcher with strategies S1 S3'
- Better approximations of the retrieval performance can be made by simulating queries with **Controlled Query Generation** and **Query Change Model**
 - Strategies S4-S4" results in the most similar retrieval performance compared to real UQVs

RQ2 To which degree do simulated queries reproduce real queries provided that only resources of the test collection are considered for the query simulation?

- Simulated queries TTS_{\$4-\$4"} reproduce real queries:
 - Comparable retrieval performance
 - Lower Root-Mean-Square-Error
 - High p-values for some real user queries
- Shared task utility:
 - More similar relative system orderings for the first queries
 - Later query reformulations have different system orderings
- Economic properties:
 - $\circ \qquad {\sf Session-oriented evaluations show similarities wrt. sDCG and is oquant}$
- Query term similarity:
 - $\circ \qquad {\sf Only \ slight \ overlap \ between \ terms \ of \ real \ and \ simulated \ queries}$
 - \circ Highest overlap between simulated queries $\mathsf{TTS}_{\mathsf{S1-S3''}}$ and $\mathsf{KIS}_{\mathsf{S1-S3''}}$

Thank you!

Special Interest Group on Information Retrieval

Many thanks to the SIGIR Student Travel Grant program!

References

Azzopardi; The economics in interactive information retrieval; SIGIR 2011.

Carterette, Bah, Zengin; Dynamic test collections for retrieval evaluation; ICTIR 2015.

Huurnik, Hofmann, de Rijke, Bron; Validating query simulators: an experiment using commercial searches and purchases; CLEF 2010.

Järvelin, Price, Delcambre, Nielsen; Discounted cumulated gain based evaluation of multiple-query IR sessions; ECIR 2008.

Jordan, Watters, Gao; Using controlled query generation to evaluate blind relevance feedback algorithms; JCDL 2006.

Liu, Craswell, Lu, Kurland, Culpepper; A comparative analysis of human and automatic query variants; SIGIR 2019.

Mackenzie and Moffat; Modality effects when simulating user querying tasks; ICTIR 2021.

Maxwell and Azzopardi; Agents, simulated users and humans: an analysis of performance and behaviour; CIKM 2016.

Pääkönen, Kekäläinen, Keskustalo, Azzopardi, Maxwell, Järvelin; Validating simulated interaction for retrieval evaluation; Information Retrieval Journal 2017.

Voorhees; Variations in relevance judgments and the measurement of retrieval effectiveness; SIGIR 1998.

Yang, Guan, Zhang; The query change model: modeling session search as a Markov decision process; TOIS 2015.

Zhang, Liu, Zhai; Information retrieval evaluation as search simulation: a general formal framework for IR evaluation; ICTIR 2017.